interplot¶
Quick Start¶
interplot¶
Create matplotlib and plotly charts with the same few lines of code.
It combines the best of the matplotlib and the plotly worlds through a unified, flat API.
Switch between matplotlib and plotly with the single keyword interactive. All the necessary boilerplate code to translate between the packages is contained in this module.
Currently supported building blocks:
scatter plots
linescatterlinescatter
bar charts
barhistogram
histboxplot
boxplotheatmap
heatmaplinear regression
regressionline fill
fillannotations
text
Supported
2D subplots
automatic color cycling
3 different API modes
One line of code
>>> interplot.line([0,4,6,7], [1,2,4,8]) [plotly line figure] >>> interplot.hist(np.random.normal(40, 8, 1000), interactive=False) [matplotlib hist figure] >>> interplot.boxplot( >>> [ >>> np.random.normal(20, 5, 1000), >>> np.random.normal(40, 8, 1000), >>> np.random.normal(60, 5, 1000), >>> ], >>> ) [plotly boxplots]
Decorator to auto-initialize plots to use in your methods
>>> @interplot.magic_plot >>> def plot_my_data(fig=None): >>> # import and process your data... >>> data = np.random.normal(2, 3, 1000) >>> # draw with the fig instance obtained from the decorator function >>> fig.add_line(data, label="my data") >>> fig.add_fill((0, 999), (-1, -1), (5, 5), label="sigma") >>> plot_my_data(title="My Recording") [plotly figure "My Recording"] >>> @interplot.magic_plot_preset(interactive=False, title="Preset Title") >>> def plot_my_data_preconfigured(fig=None): >>> # import and process your data... >>> data = np.random.normal(2, 3, 1000) >>> # draw with the fig instance obtained from the decorator function >>> fig.add_line(data, label="my data") >>> fig.add_fill((0, 999), (-1, -1), (5, 5), label="sigma") >>> plot_my_data_preconfigured() [matplotlib figure "Preset Title"]
The
interplot.Plotclass for full control>>> fig = interplot.Plot( >>> interactive=True, >>> title="Everything Under Control", >>> fig_size=(800, 500), >>> rows=1, >>> cols=2, >>> shared_yaxes=True, >>> # ... >>> ) >>> fig.add_hist(np.random.normal(1, 0.5, 1000), row=0, col=0) >>> fig.add_boxplot( >>> [ >>> np.random.normal(20, 5, 1000), >>> np.random.normal(40, 8, 1000), >>> np.random.normal(60, 5, 1000), >>> ], >>> row=0, >>> col=1, >>> ) >>> # ... >>> fig.post_process() >>> fig.show() [plotly figure "Everything Under Control"] >>> fig.save("export/path/file.html") saved figure at export/path/file.html
Resources¶
Documentation: https://interplot.janjo.ch
Demo Notebooks: https://nbviewer.org/github/janjoch/interplot/tree/main/demo/
Source Code: https://github.com/janjoch/interplot
Licence¶
Demo¶
View on NBViewer:
Try on Binder:
Install¶
pip install interplot
dev installation¶
git clone https://github.com/janjoch/interplotcd interplotpip install -e .
Contribute¶
Ideas, bug reports/fixes, feature requests and code submissions are very welcome! Please write to janjo@duck.com or directly into a pull request.
Examples¶
>>> interplot.line([0,4,6,7], [1,2,4,8])
>>> interplot.line(
... x=[0,4,6,7],
... y=[1,2,4,8],
... interactive=False,
... color="red",
... title="matplotlib static figure",
... xlabel="abscissa",
... ylabel="ordinate",
... )
>>> fig = interplot.Plot(
... interactive=True,
... title="Everything Under Control",
... fig_size=(800, 500),
... rows=1,
... cols=2,
... shared_yaxes=True,
... save_fig=True,
... save_format=("html", "png"),
... # ...
... )
... fig.add_hist(np.random.normal(1, 0.5, 1000), row=0, col=0)
... fig.add_boxplot(
... [
... np.random.normal(20, 5, 1000),
... np.random.normal(40, 8, 1000),
... np.random.normal(60, 5, 1000),
... ],
... row=0,
... col=1,
... )
... # ...
... fig.post_process()
... fig.show()
saved figure at Everything-Under-Control.html
saved figure at Everything-Under-Control.png
>>> @interplot.magic_plot
... def plot_lines(samples=100, n=10, label="sigma={0}, mu={1}", fig=None):
... """
... Plot Gaussian noise.
...
... The function must accept the `fig` parameter from the decorator.
... """
... for i in range(1, n+1):
... fig.add_line(
... np.random.normal(i*10,i,samples),
... label=label.format(i, i*10),
... )
>>> plot_lines(samples=200, title="Normally distributed Noise")
>>> plot_lines(
... samples=200, interactive=False, title="Normally distributed Noise")
Note
More examples can be found on NBViewer.